报告题目:Distribution solutions of a static dispersion Schrodinger equation
报 告 人:雷雨田教授 南京师范大学
报告时间:2024年9月24日 14:00-15:00
报告地点:腾讯会议 ID:351-382-189
点击链接入会,或添加至会议列表:
https://meeting.tencent.com/dm/G08l3beexVtF
校内联系人:刘长春 liucc@jlu.edu.cn
报告摘要:
In this talk, we state qualitative properties of distribution solutions of a fourth order equation
$$
-\Delta u(x)+a^2\Delta^2u(x)=u^q(x), \quad u(x)>0 \ \ in \ \ \mathbb{R}^3,
$$
where $a>0$ and $q>0$. It is the static equation of a mixed dispersion Schrodinger equation, and also the Euler-Lagrange equation satisfied by extremal functions of an embedding inequality. We obtain some Liouville theorems and the corresponding critical exponents, which imply the best constant of the embedding inequality cannot be attained. We also obtain some regularity results (involving differentiability, integrability, radial symmetry) and asymptotics at infinity of distribution solutions. Here an equivalent integral equation with the Coulomb potential $|x|^{-1}(1-e^{-|x|/a})$ plays a key role. In addition, we also use the Pohozaev identity in integral form to obtain the Liouville theorem of this integral equation. Such the Pohozaev identity still works to handle the Allen-Cahn-type integral equation.
报告人简介:
雷雨田,南京师范大学教授,博士生指导教师。1989年考入3044am永利集团3044noc数学系。1999年毕业于3044am永利集团3044noc数学研究所,获理学博士学位。2009年8月至2010年8月到美国科罗拉多大学应用数学系访问一年。 从事Ginzburg-Landau型泛函的极小元的极限行为的研究,并以相变中的若干能量摄动模型为研究对象,研究它们的变分理论和渐近性态,同时探讨p-调和映射的各种性质, 近年从事Riesz位势, Bessel位势, Wolff位势在Lane-Emden型方程(组)中的应用。已在SIAM J. Math. Anal.,Math. Z., J. Differential Equations, Calc. Var. Partial Differential Equations,J. Funct. Anal. 等杂志发表100多篇文章。主持和完成多项国家自然科学基金和省部级项目。