学术论文: |
[1] Z. Tao, J. Zhang, J. Zhu, J. Qiu, High-order multi-resolution central Hermite WENO schemes for hyperbolic conservation laws, Journal of Scientific Computing, 2024, 99: 40. [2] S. Cui, Z. Tao, J. Zhu, A new fifth-order finite volume central WENO scheme for hyperbolic conservation laws on staggered meshes, Advances in Applied Mathematics and Mechanics, 2022, 14(5): 1059-1086. [3] S. Cui, Z. Tao, J. Zhu, New finite difference unequal-sized Hermite WENO scheme for Navier-Stokes equations, Computers and Mathematics with Applications, 2022, 128: 273–284. [4] J. Huang, Y. Liu, Y. Liu, Z. Tao, Y. Cheng, A class of adaptive multiresolution ultra-weak discontinuous Galerkin methods for some nonlinear dispersive wave equations, SIAM Journal on Scientific Computing, 2022, 44(2): A745-A769. [5] Z. Tao, J. Huang, Y. Liu, W. Guo, Y. Cheng, An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrodinger equations, Communications on Applied Mathematics and Computation 2022, 4: 60–83. [6] W. Guo, J. Huang, Z. Tao, Y. Cheng, An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions, Journal of Computational Physics, 2021, 436: 110294. [7] Z. Tao, Y. Jiang, Y. Cheng, An adaptive high-order piecewise polynomial based sparse grid collocation method with applications, Journal of Computational Physics, 2021, 433: 109770. [8] J. Huang, Y. Liu, W.Guo, Z. Tao, Y. Cheng, An adaptive multiresolution interior penalty discontinuous Galerkin method for wave equations in second order form, Journal of Scientific Computing, 2020, 85: 13. |